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Abstract. For each of the two simplest Hamiltonian flows from the relativistic Toda hierarchy
we introduce two integrable symplectic discretizations. All four discrete-time systems are
demonstrated to belong to the same hierarchy and to exemplify the general scheme for symplectic
maps on groups equipped with quadratic Poisson brackets. The initial-value problem for the
difference equations is solved in terms of a factorization problem in a group. Interpolating
Hamiltonian flows are found for all maps.

1. Introduction

Although the subject of integrable symplectic maps has received considerable attention in
recent years, order in this area still seems to be lacking. Given an integrable system of
ordinary differential equations with such attributes as a Lax pair and anr-matrix, one would
like to construct its difference approximation, preferably also with (a discrete-time analogue
of) a Lax pair, anr-matrix, etc. Recent years have produced several successful examples
of such a construction [1–8], but still not the general rules and recipes, not to mention
algorithms.

Recently there appeared for the first time examples where the Lax matrix of the discrete-
time approximationcoincideswith the Lax matrix of the continuous-time system, so the
discrete-time system belongs to thesameintegrable hierarchy as the underlying continuous-
time one (systems of Calogero–Moser type [7, 8]). We want to present here one more
example of this type, which can be studied in full (and beautiful) detail—the discrete-time
analogue of the relativistic Toda lattice [9]; see also [10–12].

The paper is organized as follows. In section 2 and section 3 we start by recalling
some facts about the continuous-time relativistic Toda lattice, itsr-matrix structure and the
solution in terms of a factorization problem in a matrix group. Most of these facts are
by now well known, but it has turned out to be rather difficult or even impossible to find
them in the literature in a form suitable for our present purposes. In section 4 we go on to
introduce the equations of motion for the four versions of the discrete-time relativistic Toda
lattice and derive their Lax representations. Section 5 is devoted to the Newtonian form of
equations of motion. Finally, in section 6 we discuss some general aspects of integrable
discretizations.

† E-mail: suris@mathematik.uni-bremen.de
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2. The relativistic Toda lattice

We consider in this paper two flows from the relativistic Toda hierarchy. The first is
described by the equations of motion

ḋk = dk(ck − ck−1) ċk = ck(dk+1 + ck+1 − dk − ck−1) 1 6 k 6 N (2.1)

and the second is described by the equations of motion

ḋk = dk

(
ck

dkdk+1
− ck−1

dk−1dk

)
ċk = ck

(
1

dk

− 1

dk+1

)
1 6 k 6 N. (2.2)

Both of these sets of equations may be considered either under open-end boundary conditions
(dN+1 = c0 = cN = 0), or under periodic ones (all the subscripts are taken modN , so that
dN+1 = d1, c0 = cN , cN+1 = c1). Both flows are Hamiltonian with respect to the Poisson
brackets

{ck, ck+1} = −ckck+1 {ck, dk+1} = −ckdk+1 {ck, dk} = ckdk (2.3)

(only the non-vanishing brackets are written down), with Hamiltonian functions

J+ =
N∑

k=1

(dk + ck) J− =
N∑

k=1

dk + ck

dkdk+1

respectively.
The Lax representation and the integrability for the flows (2.1) and (2.2) are dealt with

in the following statement. Introduce twoN -by-N matrices depending on the phase-space
coordinatesck, dk and (in the periodic case) on the additional parameterλ:

L(c, d, λ) =
N∑

k=1

dkEkk + λ

N∑
k=1

Ek+1,k (2.4)

U(c, d, λ) =
N∑

k=1

Ekk − λ−1
N∑

k=1

ckEk,k+1. (2.5)

HereEjk stands for the matrix whose only non-zero entry at the intersection of thej th row
and thekth column is equal to 1. In the periodic case we haveEN+1,N = E1,N , EN,N+1 =
EN,1; in the open-end case we setλ = 1, andEN+1,N = EN,N+1 = 0. Consider also the
following two matrices:

T+(c, d, λ) = L(c, d, λ)U−1(c, d, λ) T−(c, d, λ) = U−1(c, d, λ)L(c, d, λ). (2.6)

Theorem 1.The flow (2.1) is equivalent to the following matrix differential equations:

L̇ = LB − AL U̇ = UB − AU

which imply also

Ṫ+ = [
T+, A

]
Ṫ− = [

T−, B
]

where

A(c, d, λ) =
N∑

k=1

(dk + ck−1)Ekk + λ

N∑
k=1

Ek+1,k (2.7)

B(c, d, λ) =
N∑

k=1

(dk + ck)Ekk + λ

N∑
k=1

Ek+1,k. (2.8)
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The flow (2.2) is equivalent to the following matrix differential equations:

L̇ = LD − CL U̇ = UD − CU

which imply also

Ṫ+ = [
T+, C

]
Ṫ− = [

T−, D
]

where

C(c, d, λ) = −λ−1
N∑

k=1

ck

dk+1
Ek,k+1 (2.9)

D(c, d, λ) = −λ−1
N∑

k=1

ck

dk

Ek,k+1. (2.10)

The spectral invariants of the matricesT±(c, d, λ) serve as integrals of motion for both
of the flows (2.1) and (2.2). These integrals are in involution with respect to the Poisson
bracket (2.3).

So we see that either of the matricesT± (they are in fact connected by means of a
similarity transformation) can serve as a Lax matrix forboth of the flows (2.1) and (2.2).
Note also that HamiltoniansJ± belong to the set of invariant functions ofT±, as it is easy
to check that

J+ = tr(T±) J− = tr(T −1
± ).

3. Algebraic structure

Here we recall some of the results of [11, 12] on the algebraic interpretation of the relativistic
Toda lattice as a Hamiltonian system on a particular orbit of a certain Poisson bracket on
a matrix group ([11] deals with a gauge transformation of a Lax matrix, which results in
a different Poisson bracket on a group). The results concerning the difference Lax triads
(part (c) of theorem 2 below) are, as far as I am aware, new; however, similar results
for less general Poisson brackets can be found in [13, 14]. (Recall that the orbit of the
relativistic Toda lattice fails to be a Poisson submanifold for the brackets from [13, 14],
so the generalization in [12] is necessary.) Theorem 2 serves as a wide generalization of
seminal work by Symes [15].

First of all, we define the relevant algebras, groups and decompositions.

(1) For the open-end case we setg = gl(N). As a linear space,g may be represented
as a direct sum of two subspaces, which serve also as subalgebras:g = g+ ⊕ g−, where
g+ (g−) is a space of all lower triangular (strictly upper triangular)N -by-N matrices.
The corresponding groups are:G = GL(N); G+ (G−) is a group of all non-degenerate
lower triangularN -by-N matrices (upper triangularN -by-N matrices with unities on the
diagonal).

(2) For the periodic caseg is a certain twisted-loop algebra overgl(N):

g = {
τ(λ) ∈ gl(N)[λ, λ−1]: �τ(λ)�−1 = τ(ωλ)

}
where� = diag(1, ω, . . . , ωN−1), ω = exp(2π i/N). Again, as a linear spaceg = g+ ⊕g−,
whereg+ (g−) is a subspace and subalgebra consisting ofτ(λ) containing only non-negative
(only negative) powers ofλ. The corresponding groups are:G, the twisted-loop group,
i.e. the group ofGL(N)-valued functionsT (λ) of the complex parameterλ, regular in
CP 1\{0, ∞} and satisfying�T (λ)�−1 = T (ωλ); G+ (G−) is the subgroup consisting of
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T (λ) regular in the neighbourhood ofλ = 0 (regular in the neighbourhood ofλ = ∞ and
taking the valueI in λ = ∞).

For both the open-end case and the periodic case everyτ ∈ g admits a unique
decompositionτ = l − u, where l ∈ g+, u ∈ g−. We use the notationl = π+(τ ),
u = π−(τ ). Analogously, for both of the cases everyT ∈ G from some neighbourhood of
the group unity admits a unique factorizationT = L U−1, whereL ∈ G+, U ∈ G−. We
denote the factors asL = 5+(T ), U = 5−(T ).

Recall also that the derivative dϕ(T ) ∈ g of the conjugation-invariant function
ϕ: G 7→ C is defined by the relation

tr(dϕ(T )u) = d

dε
ϕ(T eεu)

∣∣∣∣
ε=0

= d

dε
ϕ(eεuT )

∣∣∣∣
ε=0

∀u ∈ g.

Theorem 2.
(a) Equip G × G with the quadratic Poisson bracket (38)–(41) from [12], andG

with the quadratic Poisson bracket (33) from [12]. Then the set of pairs of matrices
{(L(c, d, λ), U(c, d, λ))} forms a Poisson submanifold inG × G, the set of matrices
{T±(c, d, λ)} forms a Poisson submanifold inG, and the maps(L, U) 7→ T+ = LU−1

and(L, U) 7→ T− = U−1L are Poisson maps fromG × G into G.
(b) Let ϕ: G 7→ C be an invariant function onG. Then the Hamiltonian flow onG × G

with the Hamiltonian functionϕ(LU−1) = ϕ(U−1L) has the form

L̇ = Lπ±(dϕ(T−)) − π±(dϕ(T+))L

U̇ = Uπ±(dϕ(T−)) − π±(dϕ(T+))U

and the Hamiltonian flow onG with the Hamiltonian functionϕ(T ) has the form

Ṫ = [
T , π±(dϕ(T ))

]
T = T+ or T−.

These flows admit the following solution in terms of the factorization problem:

et dϕ(T±(0)) = L±(t) U−1
± (t) L±(t) ∈ G+ U±(t) ∈ G−

(this problem has solutions at least for sufficiently smallt):

L(t) = L−1
+ (t)L(0)L−(t) = U−1

+ (t)L(0) U−(t)

U(t) = L−1
+ (t)U(0)L−(t) = U−1

+ (t)U(0) U−(t)

and so

T±(t) = L−1
± (t)T±(0)L±(t) = U−1

± (t)T±(0) U±(t).

(c) Letf : G 7→ G be a conjugation-covariant function (so log(f ): G 7→ g is a derivative
of a conjugation-invariant function onG). Then the system of difference equations (t ∈ hZ)

L(t + h) = 5−1
±

(
f (T+(t))

)
L(t)5±

(
f (T−(t))

)
U(t + h) = 5−1

±
(
f (T+(t))

)
U(t)5±

(
f (T−(t))

)
defines a Poisson mapG × G 7→ G × G, and the difference equation

T (t + h) = 5−1
±

(
f (T (t))

)
T (t)5±

(
f (T (t))

)
T = T+ or T−

defines a Poisson mapG 7→ G. These difference equations admit the following solution in
terms of the factorization problem:

f n(T±(0)) = L±(nh) U−1
± (nh) L±(nh) ∈ G+ U±(nh) ∈ G−
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(this problem has solutions for a givenn at least iff (T±(0)) is sufficiently close to the
group unityI ):

L(nh) = L−1
+ (nh)L(0)L−(nh) = U−1

+ (nh)L(0) U−(nh)

U(nh) = L−1
+ (nh)U(0)L−(nh) = U−1

+ (nh)U(0) U−(nh)

and so

T±(nh) = L−1
± (nh)T±(0)L±(nh) = U−1

± (nh)T±(0) U±(nh).

(d) The solutions of the difference equations of part (c) are interpolated by the flows of
part (b) with the Hamiltonian functionϕ(T ) defined by

dϕ(T ) = h−1 log(f (T )).

(In part (c) and below,5−1
± (f ) stands for(5±(f ))−1.)

Part (b) of the last theorem explains, in particular, theorem 1, as forJ+(T ) = tr(T ),
J−(T ) = tr(T −1) we have

dJ+(T ) = T dJ−(T ) = −T −1

and it is not hard to check that

A = π+(T−) B = π+(T+) C = π−(−T −1
− ) D = π−(−T −1

+ ).

4. Integrable maps for the relativistic Toda lattice

We proceed now to define and investigate the four integrable maps related to theJ±-flows
of the relativistic Toda hierarchy. All of them depend on the time-steph > 0 as a parameter.

4.1. The first map

Consider the recurrence relations

ak = 1 + hdk + hck−1

ak−1
1 6 k 6 N. (4.1)

In the open-end case, becausec0 = 0 we obtain from (4.1) the following finite-continued-
fractions expressions forak = ak(c, d):

a1 = 1 + hd1 a2 = 1 + hd2 + hc1

1 + hd1
. . .

aN = 1 + hdN + hcN−1

1 + hdN−1 + hcN−2

1 + hdN−2+ . . .

+ hc1

1 + hd1

.

Obviously, they satisfy the asymptotic relation

ak = 1 + h(dk + ck−1) + O(h2) 1 6 k 6 N. (4.2)

In the periodic case the recurrences (4.1) uniquely define theak as N -periodic infinite
continued fractions. It can be proved that these continued fractions converge and their
values satisfy (4.2).
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Define other functionsbk(c, d) by

bk = ak

ak+1 − hdk+1

ak − hdk

= ak−1
ak + hck

ak−1 + hck−1
1 6 k 6 N. (4.3)

Note that the compatibility of these two expressions forbk is an immediate consequence of
(4.1), and that it follows from (4.2) that

bk = 1 + h(dk + ck) + O(h2) 1 6 k 6 N. (4.4)

Consider the discrete-time dynamical system defined by the map

d̃k = dk

ak+1 − hdk+1

ak − hdk

c̃k = ck

ak+1 + hck+1

ak + hck

(4.5)

(here we adopt the notation from [7] and [8], according to which the tilde denotes the time
shift—so, for instance,̃dk stands fordk(t + h), if dk = dk(t)).

From (4.2) it is evident that this map serves as a finite-difference approximation to the
flow (2.1). This map turns out to be integrable and to admit a Lax representation, described
in the next theorem and involving two matrices

A(c, d, λ) =
N∑

k=1

akEkk + hλ

N∑
k=1

Ek+1,k (4.6)

B(c, d, λ) =
N∑

k=1

bkEkk + hλ

N∑
k=1

Ek+1,k (4.7)

(we adopt here the conventions formulated after the formulae (2.4) and (2.5)).

Theorem 3.
(i) A(c, d, λ) = 5+ (I + hT+(c, d, λ)).
(ii) B(c, d, λ) = 5+ (I + hT−(c, d, λ)).
(iii) The dynamical system (4.5) admits a Lax representation

A(t)L(t + h) = L(t)B(t) A(t)U(t + h) = U(t)B(t) (4.8)

which implies also

T+(t + h) = A−1(t)T+(t)A(t) T−(t + h) = B−1(t)T−(t)B(t). (4.9)

Proof 1. Note first of all that the recurrence relations (4.1) are equivalent to the matrix
decomposition

U(c, d, λ) + hL(c, d, λ) = A(c, d, λ)P1(c, d, λ) (4.10)

where

P1(c, d, λ) =
N∑

k=1

Ekk − λ−1
N∑

k=1

ck

ak

Ek,k+1 ∈ G−.

Now the first statement of the theorem follows immediately, because

I + hT+ = AP1U
−1 and P1U

−1 ∈ G−.

Turning to the third statement, note that the two matrix equations in (4.8) are equivalent
to the following two pairs of equations, respectively:

akd̃k = dkbk hd̃k + ak+1 = hdk+1 + bk (4.11)

akc̃k = ckbk+1 h̃ck − ak+1 = hck+1 − bk+1. (4.12)
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Now (4.11) can immediately be shown to be equivalent to the first equation in (4.5) together
with the first expression forbk in (4.3), and (4.12) is equivalent to the second equation in
(4.5) together with the second expression forbk in (4.3).

Now we can prove the second statement of the theorem. Indeed, equations (4.10) and
(4.8) imply:

I + hT− = U−1AP1 = BŨ−1P1 and Ũ−1P1 ∈ G−.

The theorem is proved. �

4.2. The second map

This time the relevant recurrence relations read
ck

dk

= dk − h − hdk−1 1 6 k 6 N. (4.13)

As before, in the open-end case becaused0 = 0 we obtain the closed expressions

d1 = c1

d1 − h
d2 = c2

d2 − h − hc1

d1 − h

. . .

dN−1 = cN−1

dN−1 − h − hcN−2

dN−2 − h−
. . .

+ hc1

d1 − h

.

Obviously, we have

dk = ck

dk

+ O(h) 1 6 k 6 N. (4.14)

In the periodic case the recurrence relations (4.13) uniquely define thedk as theN -periodic
infinite continued fractions, which again converge and whose values satisfy relation (4.14).

Define also the functions

ck = dk

dk − hdk−1

dk+1 − hdk

= dk+1
ck + hdk

ck+1 + hdk+1
1 6 k 6 N. (4.15)

Again, the compatibility of two expressions forck is a direct consequence of (4.13). It
follows from (4.14) that

ck = ck

dk+1
+ O(h) 1 6 k 6 N. (4.16)

Now consider the discrete-time dynamical system defined by the map

d̃k = dk+1
dk − hdk−1

dk+1 − hdk

c̃k = ck+1
ck + hdk

ck+1 + hdk+1
. (4.17)

In view of (4.14) it is obvious that this map is a difference approximation to the flow (2.2).
The Lax representation for this map is described in terms of the following matrices:

C(c, d, λ) =
N∑

k=1

Ekk + hλ−1
N∑

k=1

ckEk,k+1 (4.18)

D(c, d, λ) =
N∑

k=1

Ekk + hλ−1
N∑

k=1

dkEk,k+1. (4.19)
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Theorem 4.
(i) D(c, d, λ) = 5−1

−
(
I − hT −1

− (c, d, λ)
)
.

(ii) C(c, d, λ) = 5−1
−

(
I − hT −1

+ (c, d, λ)
)
.

(iii) The dynamical system (4.17) admits a Lax representation

L(t + h)D(t) = C(t)L(t) U(t + h)D(t) = C(t)U(t) (4.20)

which implies also

T+(t + h) = C(t)T+(t)C−1(t) T−(t + h) = D(t)T−(t)D−1(t). (4.21)

Proof 2. The scheme of the proof is the same as for theorem 3, so we give here only
the necessary formulae. The recurrence relations (4.13) are equivalent to the matrix
decomposition

L(c, d, λ) − hU(c, d, λ) = P2(c, d, λ)D(c, d, λ) (4.22)

with

P2(c, d, λ) =
N∑

k=1

ck

dk

Ekk + λ

N∑
k=1

Ek+1,k ∈ G+.

This implies the first, and, together with (4.20), the second statement of the theorem, because

I − hT −1
− = L−1P2D and L−1P2 ∈ G+

I − hT −1
+ = P2DL−1 = P2L̃

−1C and P2L̃
−1 ∈ G+.

The third statement follows immediately from the representation of (4.20) as

d̃kdk = ckdk+1 d̃k + hdk−1 = dk + hck (4.23)

c̃kdk+1 = ckck+1 c̃k − hdk = ck − hck (4.24)

which is equivalent to (4.17) and (4.15). This proves the theorem. �

4.3. The third map

This time we introduce the two relevant sequences via the formulae

βk = 1 − hdk − hck

βk+1
1 6 k 6 N (4.25)

αk = βk

βk−1 + hdk−1

βk + hdk

= βk+1
βk − hck−1

βk+1 − hck

1 6 k 6 N. (4.26)

As before, in the open-end case the equalitycN = 0 leads to closed expressions for theβk:

βN = 1 − hdN βN−1 = 1 − hdN−1 − hcN−1

1 − hdN

. . .

β1 = 1 − hd1 − hc1

1 − hd2 − hc2

1 − hd3− . . .

+ hcN−1

1 − hdN

satisfying

βk = 1 − h(dk + ck) + O(h2) 1 6 k 6 N (4.27)



A discrete-time relativistic Toda lattice 459

which together with (4.26) implies also

αk = 1 − h(dk + ck−1) + O(h2) 1 6 k 6 N. (4.28)

In the periodic case the recurrence relations (4.25) uniquely define theβk as theN -periodic
infinite continued fractions, which again can be proved to converge and to satisfy (4.27).

Now we introduce the map generating a new discrete-time dynamical system:

d̃k = dk

βk−1 + hdk−1

βk + hdk

c̃k = ck

βk − hck−1

βk+1 − hck

. (4.29)

Because of (4.27) this map approximates the flow (2.1). The two matrices participating in
its Lax representation are

A(c, d, λ) =
N∑

k=1

αkEkk − hλ

N∑
k=1

Ek+1,k (4.30)

B(c, d, λ) =
N∑

k=1

βkEkk − hλ

N∑
k=1

Ek+1,k. (4.31)

Theorem 5.
(i) B(c, d, λ) = 5−1

+
(
(I − hT−(c, d, λ))−1

)
.

(ii) A(c, d, λ) = 5−1
+

(
(I − hT+(c, d, λ))−1

)
.

(iii) The dynamical system (4.29) admits a Lax representation

L(t + h)B(t) = A(t)L(t) U(t + h)B(t) = A(t)U(t) (4.32)

which implies also

T+(t + h) = A(t)T+(t)A−1(t) T−(t + h) = B(t)T−(t)B−1(t). (4.33)

Proof 3. The recurrence relations (4.25) are this time equivalent to the matrix factorization

U(c, d, λ) − hL(c, d, λ) = P3(c, d, λ)B(c, d, λ) (4.34)

where

P3(c, d, λ) =
N∑

k=1

Ekk − λ−1
N∑

k=1

ck

βk+1
Ek,k+1 ∈ G−.

This implies (i) immediately and, together with (4.32), also implies (ii), because

I − hT− = U−1P3B and U−1P3 ∈ G−

I − hT+ = P3BU−1 = P3Ũ
−1A and P3Ũ

−1 ∈ G−.

In order to prove (iii) we represent (4.32) as

d̃kβk = αkdk hd̃k − βk−1 = hdk−1 − αk (4.35)

c̃kβk+1 = αkck h̃ck + βk = hck−1 + αk (4.36)

which is readily checked to be equivalent to (4.29) and (4.26). The theorem is proved.�
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4.4. The fourth map

The last pair of sets of auxiliary functions is defined by
ck−1

γk−1
= dk + h + hγk 1 6 k 6 N (4.37)

δk = γk

dk+1 + hγk+1

dk + hγk

= γk−1
ck − hγk

ck−1 − hγk−1
1 6 k 6 N. (4.38)

In the open-end case, becausecN = 0 we obtain as usual the closed relations

γN−1 = cN−1

dN + h
γN−2 = cN−2

dN−1 + h + hcN−1

dN + h

. . .

γ1 = c1

d2 + h + hc2

d3 + h+
. . .

+ hcN−1

dN + h

.

Obviously, we have

γk = ck

dk+1
+ O(h) 1 6 k 6 N (4.39)

which implies also

δk = ck

dk

+ O(h) 1 6 k 6 N. (4.40)

In the periodic case the recurrence relations (4.37) uniquely define theγk as theN -
periodic infinite continued fractions, whose convergence can be proved, as can the validity
of (4.39).

The last discrete-time dynamical system that we introduce in this paper is defined by
the map

d̃k = dk−1
dk + hγk

dk−1 + hγk−1
c̃k = ck−1

ck − hγk

ck−1 − hγk−1
. (4.41)

Relation (4.39) makes it evident that this map serves as a finite-difference approximation to
the flow (2.2).

The matrices taking part in the Lax representation of this last map are

C(c, d, λ) =
N∑

k=1

Ekk − hλ−1
N∑

k=1

γkEk,k+1 (4.42)

D(c, d, λ) =
N∑

k=1

Ekk − hλ−1
N∑

k=1

δkEk,k+1. (4.43)

Theorem 6.
(i) C(c, d, λ) = 5−

(
(I + hT −1

+ (c, d, λ))−1
)

.

(ii) D(c, d, λ) = 5−
(
(I + hT −1

− (c, d, λ))−1
)

.

(iii) The dynamical system (4.41) admits a Lax representation:

C(t)L(t + h) = L(t)D(t) C(t)U(t + h) = U(t)D(t) (4.44)
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which implies also

T+(t + h) = C−1(t)T+(t) C(t) T−(t + h) = D−1(t)T−(t)D(t). (4.45)

Proof 4. The recurrence relations (4.37) are equivalent to the matrix factorization

L(c, d, λ) + hU(c, d, λ) = C(c, d, λ)P4(c, d, λ) (4.46)

with the matrix

P4(c, d, λ) =
N∑

k=1

ck−1

γk−1
Ekk + λ

N∑
k=1

Ek+1,k ∈ G+.

This immediately implies statement (i), and, together with (4.32), implies statement (ii),
because

I + hT −1
+ = CP4L

−1 and P4L
−1 ∈ G+

I + hT −1
− = L−1CP4 = DL̃−1P4 and L̃−1P4 ∈ G+.

In order to demonstrate (iii) we note that (4.44) is equivalent to

γk−1d̃k = dk−1δk−1 d̃k − hγk = dk − hδk−1 (4.47)

γk−1̃ck = ck−1δk c̃k + hγk = ck + hδk (4.48)

which is in turn equivalent to (4.41) and (4.38). The theorem is proved. �
Comparing now the results formulated in theorems 3–6 with theorem 2, we see that

the maps (4.5), (4.17), (4.29) and (4.41) are symplectic with respect to the Poisson bracket
(2.3), that the initial-value problem for the dynamical systems generated by these maps can
be solved in terms of factorization of the matrices

(I + hT±(0))n
(
I − hT −1

± (0)
)n (

(I − hT±(0))−1
)n (

(I + hT −1
± (0))−1

)n

respectively, and that the interpolating Hamiltonians for these discrete-time systems are
given by

tr(8(T )) − tr(8(−T −1)) − tr(8(−T )) tr(8(T −1))

respectively, where

8(ξ) = h−1
∫ ξ

0

dη

η
log(1 + hη) = ξ + O(h).

5. Equations in physical variables

It is sometimes convenient to parametrize the variablesck, dk with the Poisson brackets
(2.3) by means of canonically conjugated variablesxk, pk:

dk = exp(pk) ck = g2 exp(xk+1 − xk + pk)

(g2 ∈ R is a coupling constant). In terms of these variables

J+ =
N∑

k=1

exp(pk)(1 + g2 exp(xk+1 − xk))

J− =
N∑

k=1

exp(−pk)(1 + g2 exp(xk − xk−1)).
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By means ofxk, ẋk the variablesdk, ck are parametrized in the case ofJ+-flow as

dk = ẋk

1 + g2 exp(xk+1 − xk)
ck = g2 exp(xk+1 − xk)dk (5.1)

and in the case ofJ−-flow as

dk = −1 + g2 exp(xk − xk−1)

ẋk

ck = g2 exp(xk+1 − xk)dk. (5.2)

It is remarkable, although usually not stressed in the literature, that forboth of the
HamiltoniansJ± the evolution of variablesxk is governed by the Newtonian equations of
motion

ẍk = ẋk+1ẋk

g2 exp(xk+1 − xk)

1 + g2 exp(xk+1 − xk)
− ẋkẋk−1

g2 exp(xk − xk−1)

1 + g2 exp(xk − xk−1)
1 6 k 6 N.

(5.3)

We shall demonstrate that exactly the same phenomenon is found in the discrete-time
case. More precisely, we shall demonstrate that after a suitable parametrization of the
variablesck, dk bothof the maps (4.5) and (4.17) are described by the ‘Newtonian’ equations
of motion
exp(xk(t + h) − xk(t)) − 1

exp(xk(t) − xk(t − h)) − 1

=
(

1 + g2 exp(xk+1(t) − xk(t))
)

(
1 + g2 exp(xk+1(t − h) − xk(t))

)
×

(
1 + g2 exp(xk(t) − xk−1(t + h))

)
(

1 + g2 exp(xk(t) − xk−1(t))
) 1 6 k 6 N (5.4)

andbothof the maps (4.29) and (4.41) are described by the ‘Newtonian’ equations of motion

exp(−xk(t + h) + xk(t)) − 1

exp(−xk(t) + xk(t − h)) − 1

=
(

1 + g2 exp(xk+1(t + h) − xk(t))
)

(
1 + g2 exp(xk+1(t) − xk(t))

)
×

(
1 + g2 exp(xk(t) − xk−1(t))

)
(

1 + g2 exp(xk(t) − xk−1(t − h))
) 1 6 k 6 N. (5.5)

Before we proceed to prove these assertions, some remarks are in order. First, as opposed
to the continuous-time system (5.3), neither of the systems (5.4) and (5.5) is time reversible;
instead, the reversal of time converts (5.4) into (5.5) and vice versa. Second, in the
continuous-time limit they both tend to (5.3). Third, they both admit a simple non-relativistic
limit: set xk(t) = qk(t) + ct in (5.4) (xk(t) = qk(t) − ct in (5.5)) with c > 0 playing the
role of the speed of light; then in the limitc → ∞ both of the equations tend to one and
the same system:

exp(qk(t + h) − 2qk(t) + qk(t − h)) = 1 + g2 exp(qk+1(t) − qk(t))

1 + g2 exp(qk(t) − qk−1(t))
1 6 k 6 N
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i.e. to the equations of motion of the discrete-time Toda lattice from [3]. Last, we note that
(5.4) and (5.5) may be obtained by means of a certain limiting procedure starting from the
discrete-time relativistic hyperbolic Calogero–Moser system [8], in just the same manner as
is done for the continuous-time case in [9].

We give now explicitly the parametrizations ofck, dk leading to the Newtonian forms of
equations of motion for all four of our maps separately. These formulae are to be compared
with (5.1) and (5.2).

To do this for the map (4.5), we note that the equivalent equations (4.11) and (4.12) are
identically satisfied by the following identifications:

bk = exp(̃xk − xk)

ak = exp(̃xk − xk)
(1 + g2 exp(xk+1 − x̃k))

(1 + g2 exp(xk+1 − xk))

(1 + g2 exp(xk − xk−1))

(1 + g2 exp(xk − x̃k−1))

dk = (exp(̃xk − xk) − 1)

h(1 + g2 exp(xk+1 − xk))

(1 + g2 exp(xk − xk−1))

(1 + g2 exp(xk − x̃k−1))
(5.6)

d̃k = (exp(̃xk − xk) − 1)

h(1 + g2 exp(xk+1 − x̃k))
(5.7)

and

ck = g2 exp(xk+1 − xk)dk c̃k = g2 exp(̃xk+1 − x̃k)d̃k. (5.8)

The compatibility of expressions (5.6) and (5.7) immediately leads to (5.4).
Proceeding analogously with the map (4.17), we observe that the equivalent equations

(4.23) and (4.24) are satisfied identically by the following identifications:

dk = g2 exp(xk+1 − x̃k)

ck = g2 exp(xk+1 − x̃k)
(1 − exp(̃xk+1 − xk+1))

(1 − exp(̃xk − xk))

(1 + g2 exp(̃xk − x̃k−1))

(1 + g2 exp(̃xk+1 − x̃k))

dk = h(1 + g2 exp(xk − x̃k−1))

(1 − exp(̃xk − xk))
(5.9)

d̃k = h(1 + g2 exp(̃xk − x̃k−1))

(1 − exp(̃xk − xk))

(1 + g2 exp(xk+1 − x̃k))

(1 + g2 exp(̃xk+1 − x̃k))
(5.10)

and (5.8). The compatibility of (5.9) and (5.10) leads again to (5.4).
For the map (4.29) the equivalent equations (4.35) and (4.36) are identically satisfied

with the identifications

βk = exp(−x̃k + xk)

αk = exp(−x̃k + xk)
(1 + g2 exp(̃xk+1 − xk))

(1 + g2 exp(̃xk+1 − x̃k))

(1 + g2 exp(̃xk − x̃k−1))

(1 + g2 exp(̃xk − xk−1))

dk = (1 − exp(−x̃k + xk))

h(1 + g2 exp(̃xk+1 − xk))
(5.11)

d̃k = (1 − exp(−x̃k + xk))

h(1 + g2 exp(̃xk+1 − x̃k))

(1 + g2 exp(̃xk − x̃k−1))

(1 + g2 exp(̃xk − xk−1))
(5.12)

and (5.8). This time the compatibility of (5.11) and (5.12) leads to the equation (5.5).
Finally, the equations (4.47) and (4.48), equivalent to the map (4.41), are satisfied

identically under the identifications

δk = g2 exp(̃xk+1 − xk)
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γk = g2 exp(̃xk+1 − xk)
(exp(−x̃k+1 + xk+1) − 1)

(exp(−x̃k + xk) − 1)

(1 + g2 exp(xk − xk−1))

(1 + g2 exp(xk+1 − xk))

dk = h(1 + g2 exp(xk − xk−1))

(exp(−x̃k + xk) − 1)

(1 + g2 exp(̃xk+1 − xk))

(1 + g2 exp(xk+1 − xk))
(5.13)

d̃k = h(1 + g2 exp(̃xk − xk−1))

(exp(−x̃k + xk) − 1)
(5.14)

and (5.8). Again, the compatibility of (5.13) and (5.14) leads to the system (5.5).

6. Conclusion

Our results suggest the following integrable discretization for an arbitrary flow of the
relativistic Toda hierarchy with the Hamiltonianϕ(T ): the desired map is given by the
formulae of part (c) of theorem 2 withf (T ) = I + h dϕ(T ) or f (T ) = (I − h dϕ(T ))−1.
(It could be difficult to express such a map explicitly in terms ofck, dk.)

In fact, this is a universal recipe for discretizing finite-dimensional integrable systems,
whose phase space may be identified with an orbit of anr-matrix Poisson bracket on a
Lie group. The author intends to describe other applications of this general approach in a
separate paper.

The problem, however, lies in the fact that for some of the most beautiful known
examples of integrable maps [1, 3, 5, 6] the phase space is an orbit of adifferent bracket
to that for the underlying continuous-time system. For example, the discrete-timenon-
relativistic Toda lattice ‘lives’ on the same orbit as the continuous-timerelativistic Toda
lattice [3, 11]. Unfortunately, there seems to be no rule for identifyinga priori the correct
r-matrix bracket for beautiful discretizations, partly because of the non-rigorous nature of
the notion ‘beautiful’.
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